Spectral properties of bacteriophytochrome AM1_5894 in the chlorophyll d-containing cyanobacterium Acaryochloris marina

نویسندگان

  • Patrick C. Loughlin
  • Zane Duxbury
  • Tendo T. Mukasa Mugerwa
  • Penelope M. C. Smith
  • Robert D. Willows
  • Min Chen
چکیده

Acaryochloris marina, a unicellular oxygenic photosynthetic cyanobacterium, has uniquely adapted to far-red light-enriched environments using red-shifted chlorophyll d. To understand red-light use in Acaryochloris, the genome of this cyanobacterium was searched for red/far-red light photoreceptors from the phytochrome family, resulting in identification of a putative bacteriophytochrome AM1_5894. AM1_5894 contains three standard domains of photosensory components as well as a putative C-terminal signal transduction component consisting of a histidine kinase and receiver domain. The photosensory domains of AM1_5894 autocatalytically assemble with biliverdin in a covalent fashion. This assembled AM1_5894 shows the typical photoreversible conversion of bacterial phytochromes with a ground-state red-light absorbing (Pr) form with λBV max[Pr] 705 nm, and a red-light inducible far-red light absorbing (Pfr) form with λBV max[Pfr] 758 nm. Surprisingly, AM1_5894 also autocatalytically assembles with phycocyanobilin, involving photoreversible conversion of λPCB max[Pr] 682 nm and λPCB max[Pfr] 734 nm, respectively. Our results suggest phycocyanobilin is also covalently bound to AM1_5894, while mutation of a cysteine residue (Cys11Ser) abolishes this covalent binding. The physiological function of AM1_5894 in cyanobacteria containing red-shifted chlorophylls is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectroscopic studies of photosystem II in chlorophyll d-containing Acaryochloris marina.

Photosystem II (PSII) electron transfer (ET) in the chlorophyll d-containing cyanobacterium Acaryochloris marina (A. marina) was studied by time-resolved electron paramagnetic resonance (EPR) spectroscopy at room temperature, chlorophyll fluorescence, and low-temperature optical spectroscopy. To maximize the ability to measure PSII ET in the intact cells of this organism, growth conditions were...

متن کامل

Niche adaptation and genome expansion in the chlorophyll d-producing cyanobacterium Acaryochloris marina.

Acaryochloris marina is a unique cyanobacterium that is able to produce chlorophyll d as its primary photosynthetic pigment and thus efficiently use far-red light for photosynthesis. Acaryochloris species have been isolated from marine environments in association with other oxygenic phototrophs, which may have driven the niche-filling introduction of chlorophyll d. To investigate these unique a...

متن کامل

A biliverdin-binding cyanobacteriochrome from the chlorophyll d–bearing cyanobacterium Acaryochloris marina

Cyanobacteriochromes (CBCRs) are linear tetrapyrrole-binding photoreceptors in cyanobacteria that absorb visible and near-ultraviolet light. CBCRs are divided into two types based on the type of chromophore they contain: phycocyanobilin (PCB) or phycoviolobilin (PVB). PCB-binding CBCRs reversibly photoconvert at relatively long wavelengths, i.e., the blue-to-red region, whereas PVB-binding CBCR...

متن کامل

Two Unrelated 8-Vinyl Reductases Ensure Production of Mature Chlorophylls in Acaryochloris marina

UNLABELLED The major photopigment of the cyanobacterium Acaryochloris marina is chlorophyll d, while its direct biosynthetic precursor, chlorophyll a, is also present in the cell. These pigments, along with the majority of chlorophylls utilized by oxygenic phototrophs, carry an ethyl group at the C-8 position of the molecule, having undergone reduction of a vinyl group during biosynthesis. Two ...

متن کامل

Identification of the primary electron donor in PS II of the Chl d-dominated cyanobacterium Acaryochloris marina.

The primary electron donor of photosystem (PS) II in the chlorophyll (Chl) d-dominated cyanobacterium Acaryochloris marina was confirmed by delayed fluorescence (DF) and further proved by pigment contents of cells grown under several light intensities. The DF was found only in the Chl a region, identical to Synechocystis sp. PCC 6803, and disappeared following heat treatment. Pigment analyses i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016